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Abstract—The bit error probability (BEP) for coherent de-
tection of binary signals with dual-diversity predetection equal
gain combining is derived using the Beaulieu series. In particular,
we consider a correlated Rayleigh fading channel with unequal
branch signal-to-noise ratios. The BEP expression is in terms
of the power correlation coefficient of the branches, is easy to
compute, and depicts clearly the effect of correlated fading on the
error performance.

Index Terms—Bit error probability, coherent binary keying, cor-
related Rayleigh fading.

I. INTRODUCTION

A MONG the suboptimal diversity combining methods to
combat fading in wireless communications, predetection

equal gain combining (EGC) provides a performance compa-
rable to that of maximal ratio combining (MRC), but with a
simplified receiver structure. Hence, analysis of EGC is of con-
siderable interest. EGC for independent diversity branches in
Rayleigh and Nakagami fading was studied in [1]–[5].

In this letter, we analyze predetection EGC with dual-diver-
sity in correlated Rayleigh fading. Using the Beaulieu series [6],
we derive a computationally simple series expression for the av-
erage bit error probability (BEP) of coherent detection of binary
signals. Both the cases of equal branch signal-to-noise ratios
(SNRs) and unequal branch SNRs are included in our frame-
work.

In Section II, we present preliminary results related to the
bivariate Rayleigh distribution. An expression for the BEP is
obtained in Section III. Section IV gives some numerical results.

II. PRELIMINARIES

Let and be two correlated random variables which are
marginally Rayleigh with second moments
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where denotes the expectation, andpower correlation
coefficient

(1)

The joint cumulative distribution function (cdf) of can be
expressed in terms of the Beaulieu series [6]

(2)

where the incomplete gamma function has the rep-
resentation [7, eq. 8.352(1)]

In the performance analysis, we will use the joint character-
istic function (cf) of and , which can be obtained from (2)
and is given by [8, p. 409]

(3)

where for

(4)

Note that denotes the gamma function and de-
notes the confluent hypergeometric function [7, eq. 9.210(1)].
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III. EQUAL GAIN COMBINING

We consider a coherent dual-diversity reception system with
a correlated flat Rayleigh fading channel, in which the receiver
employs matched filter detection. With EGC, the received sig-
nals of each diversity branch are co-phased, combined, and co-
herently demodulated. The complex baseband signal received
over the th diversity branch in a bit interval can be
represented as

where is the information-bearing signal, and are
the fading magnitude and phase, respectively, of theth diver-
sity branch, and represents the additive noise. The noises

and are assumed to be independent zero-mean com-
plex white Gaussian random processes with two-sided power
spectral densities and , respectively. We also assume
independence among the random sequences and

. The fading magnitudes are assumed to becor-
relatedRayleigh random variables satisfying (1) with joint cdf

given by (2).
Consider coherent detection of binary signals in which, over

a bit interval, if bit is transmitted, where .
The complex waveforms and have support
and satisfy1

(5)

Note that thesignal correlation coefficient is the correlation
coefficient of and . The decision rule of the receiver
is given by

This can be simplified using (5) to yield [2]

if bit is transmitted (6)

where

are independent zero-mean real Gaussian random variables with
variances

1The notation<f � g stands for the real-part operator.

By the symmetry of , the BEP is given by
, where represents the probability. If

denotes the cdf of the decision variable and de-
notes its cf, then, invoking the inversion theorem [9], we get2

(7)

The cf of is given by

(8)

where can be obtained from (3). Noting that

we get from (8) and (3) the relation

(9a)

where

(9b)

Now [8, p. 1074]

(10)

where is the Hermite polynomial [10, eq. 22.3.11]
of order .

We next evaluate the integral

(11)

Changing the variable of integration to in (11), and
using (9b) and (10), we obtain

(12)

2The notation=f � g stands for the imaginary-part operator.
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Fig. 1. BEPP of BPSK versus average SNR per branch(SNR + SNR )=2 with different values of power correlation coefficient� for (a) SNR =
SNR , (b) SNR = 10 SNR .

Using the result of [7, eq. 7.621(4)] in (12), we get

(13)

where denotes the Gaussian hypergeometric func-
tion [10, eq. 15.1.1]. Equations (9), (11), and (13) yield

(14)

Let the branch SNRs be defined by [2]

and let

Changing the summation indexto in (13), we combine
(14), (13), and (7) to obtain the final expression for the BEP,
which is

(15)

Expression (15) is in terms of a series of powers of, enabling
easy computation of the BEP, and quantifying the effect ofon
the BEP. In the case of independent branches ( ), only the

term of the summation over in (15) is nonzero. Using
the result [10, eq. 15.1.17]
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(15) simplifies to

which is the same as [2, eq. (23)].

IV. NUMERICAL RESULTS

The BEP of BPSK ( ) is plotted against
, the average SNR per branch, in Fig. 1,

with different values of the power correlation coefficient
for equal branch SNRs ( ) as well as for

unequal branch SNRs ( ). The Gaussian
hypergeometric functions in (15) have been calculated using a
truncated series formula with a relative error tolerance of 0.001.
In computing 25 terms are taken in the summation
over in (15) for . The maximum relative error
obtained over all computations is 4.04%. The plots
reveal that, as expected, for a given average SNR per branch,
the BEP increases with an increase inand that a system with
equal branch SNRs performs better than that with unequal
branch SNRs.
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